There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-A{x}^{2}}{({(\frac{1}{x} - 1)}^{2})} + \frac{B{x}^{2}}{(1.6258(C(\frac{1}{x} - 1)) - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-Ax^{2}}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{Bx^{2}}{(\frac{1.6258C}{x} - 1.6258C - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-Ax^{2}}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{Bx^{2}}{(\frac{1.6258C}{x} - 1.6258C - 1)}\right)}{dx}\\=&\frac{-(\frac{-(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} - 1)^{2}})Ax^{2}}{(\frac{1}{x} - 1)} - \frac{(\frac{-(\frac{-1}{x^{2}} + 0)}{(\frac{1}{x} - 1)^{2}})Ax^{2}}{(\frac{1}{x} - 1)} - \frac{A*2x}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + (\frac{-(\frac{1.6258C*-1}{x^{2}} + 0 + 0)}{(\frac{1.6258C}{x} - 1.6258C - 1)^{2}})Bx^{2} + \frac{B*2x}{(\frac{1.6258C}{x} - 1.6258C - 1)}\\=&\frac{-A}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)(\frac{1}{x} - 1)} - \frac{A}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)(\frac{1}{x} - 1)} - \frac{2Ax}{(\frac{1}{x} - 1)(\frac{1}{x} - 1)} + \frac{1.6258BC}{(\frac{1.6258C}{x} - 1.6258C - 1)(\frac{1.6258C}{x} - 1.6258C - 1)} + \frac{2Bx}{(\frac{1.6258C}{x} - 1.6258C - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!