There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - 2)(x - 3)(x - 4)(x - 5)}{4} - (x - 1)(x - 3)(x - 4)(x - 5) + \frac{(x - 1)(x - 2)(x - 4)(x - 5)}{2} - \frac{(x - 1)(x - 2)(x - 3)(x - 5)}{4} + \frac{(x - 1)(x - 2)(x - 3)(x - 4)}{24}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-25}{26}x^{4} + \frac{35}{6}x^{3} - \frac{613}{24}x^{2} + \frac{128}{3}x - \frac{33}{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-25}{26}x^{4} + \frac{35}{6}x^{3} - \frac{613}{24}x^{2} + \frac{128}{3}x - \frac{33}{2}\right)}{dx}\\=&\frac{-25}{26}*4x^{3} + \frac{35}{6}*3x^{2} - \frac{613}{24}*2x + \frac{128}{3} + 0\\=&\frac{-50x^{3}}{13} + \frac{35x^{2}}{2} - \frac{613x}{12} + \frac{128}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!