There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{(2x)}arctan(sqrt({e}^{x} - 1)))}{2} - (\frac{1}{6}){({e}^{x} - 1)}^{(\frac{3}{2})} - (\frac{1}{2})(sqrt({e}^{x} - 1))\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}{e}^{(2x)}arctan(sqrt({e}^{x} - 1)) - \frac{1}{6}({e}^{x} - 1)^{\frac{3}{2}} - \frac{1}{2}sqrt({e}^{x} - 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}{e}^{(2x)}arctan(sqrt({e}^{x} - 1)) - \frac{1}{6}({e}^{x} - 1)^{\frac{3}{2}} - \frac{1}{2}sqrt({e}^{x} - 1)\right)}{dt}\\=&\frac{1}{2}({e}^{(2x)}((0)ln(e) + \frac{(2x)(0)}{(e)}))arctan(sqrt({e}^{x} - 1)) + \frac{1}{2}{e}^{(2x)}(\frac{(\frac{(({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)})) + 0)*\frac{1}{2}}{({e}^{x} - 1)^{\frac{1}{2}}})}{(1 + (sqrt({e}^{x} - 1))^{2})}) - \frac{1}{6}(\frac{3}{2}({e}^{x} - 1)^{\frac{1}{2}}(({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)})) + 0)) - \frac{\frac{1}{2}(({e}^{x}((0)ln(e) + \frac{(x)(0)}{(e)})) + 0)*\frac{1}{2}}{({e}^{x} - 1)^{\frac{1}{2}}}\\=& - \frac{0}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!