There are 2 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ second\ derivative\ of\ function\ {(cos(x))}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos^{3}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos^{3}(x)\right)}{dx}\\=&-3cos^{2}(x)sin(x)\\=&-3sin(x)cos^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -3sin(x)cos^{2}(x)\right)}{dx}\\=&-3cos(x)cos^{2}(x) - 3sin(x)*-2cos(x)sin(x)\\=&-3cos^{3}(x) + 6sin^{2}(x)cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ second\ derivative\ of\ function\ {(sin(x)(x))}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}sin^{3}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}sin^{3}(x)\right)}{dx}\\=&3x^{2}sin^{3}(x) + x^{3}*3sin^{2}(x)cos(x)\\=&3x^{3}sin^{2}(x)cos(x) + 3x^{2}sin^{3}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{3}sin^{2}(x)cos(x) + 3x^{2}sin^{3}(x)\right)}{dx}\\=&3*3x^{2}sin^{2}(x)cos(x) + 3x^{3}*2sin(x)cos(x)cos(x) + 3x^{3}sin^{2}(x)*-sin(x) + 3*2xsin^{3}(x) + 3x^{2}*3sin^{2}(x)cos(x)\\=&18x^{2}sin^{2}(x)cos(x) + 6x^{3}sin(x)cos^{2}(x) - 3x^{3}sin^{3}(x) + 6xsin^{3}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!