There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{arctan(e^{x} - 1)}^{1}(\frac{{(e^{x} - 1)}^{2}}{2} + e^{x} - 1)}{2} - \frac{{(e^{x} - 1)}^{3}}{3*2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}e^{{x}*{2}}arctan(e^{x} - 1) - \frac{1}{4}arctan(e^{x} - 1) - \frac{1}{6}e^{{x}*{3}} + \frac{1}{2}e^{{x}*{2}} - \frac{1}{2}e^{x} + \frac{1}{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}e^{{x}*{2}}arctan(e^{x} - 1) - \frac{1}{4}arctan(e^{x} - 1) - \frac{1}{6}e^{{x}*{3}} + \frac{1}{2}e^{{x}*{2}} - \frac{1}{2}e^{x} + \frac{1}{6}\right)}{dx}\\=&\frac{1}{4}*2e^{x}e^{x}arctan(e^{x} - 1) + \frac{1}{4}e^{{x}*{2}}(\frac{(e^{x} + 0)}{(1 + (e^{x} - 1)^{2})}) - \frac{1}{4}(\frac{(e^{x} + 0)}{(1 + (e^{x} - 1)^{2})}) - \frac{1}{6}*3e^{{x}*{2}}e^{x} + \frac{1}{2}*2e^{x}e^{x} - \frac{1}{2}e^{x} + 0\\=&\frac{e^{{x}*{2}}arctan(e^{x} - 1)}{2} + \frac{e^{{x}*{3}}}{4(e^{{x}*{2}} - 2e^{x} + 2)} - \frac{e^{x}}{4(e^{{x}*{2}} - 2e^{x} + 2)} - \frac{e^{{x}*{3}}}{2} + e^{{x}*{2}} - \frac{e^{x}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!