There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x + 5)}^{2})({(x - 4)}^{\frac{1}{3}})}{(({(x + 2)}^{5})({(x + 4)}^{\frac{1}{2}}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x - 4)^{\frac{1}{3}}x^{2}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{10(x - 4)^{\frac{1}{3}}x}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{25(x - 4)^{\frac{1}{3}}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x - 4)^{\frac{1}{3}}x^{2}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{10(x - 4)^{\frac{1}{3}}x}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{25(x - 4)^{\frac{1}{3}}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{-5(1 + 0)}{(x + 2)^{6}})(x - 4)^{\frac{1}{3}}x^{2}}{(x + 4)^{\frac{1}{2}}} + \frac{(\frac{\frac{1}{3}(1 + 0)}{(x - 4)^{\frac{2}{3}}})x^{2}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{(x - 4)^{\frac{1}{3}}(\frac{\frac{-1}{2}(1 + 0)}{(x + 4)^{\frac{3}{2}}})x^{2}}{(x + 2)^{5}} + \frac{(x - 4)^{\frac{1}{3}}*2x}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{10(\frac{-5(1 + 0)}{(x + 2)^{6}})(x - 4)^{\frac{1}{3}}x}{(x + 4)^{\frac{1}{2}}} + \frac{10(\frac{\frac{1}{3}(1 + 0)}{(x - 4)^{\frac{2}{3}}})x}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{10(x - 4)^{\frac{1}{3}}(\frac{\frac{-1}{2}(1 + 0)}{(x + 4)^{\frac{3}{2}}})x}{(x + 2)^{5}} + \frac{10(x - 4)^{\frac{1}{3}}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{25(\frac{-5(1 + 0)}{(x + 2)^{6}})(x - 4)^{\frac{1}{3}}}{(x + 4)^{\frac{1}{2}}} + \frac{25(\frac{\frac{1}{3}(1 + 0)}{(x - 4)^{\frac{2}{3}}})}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{25(x - 4)^{\frac{1}{3}}(\frac{\frac{-1}{2}(1 + 0)}{(x + 4)^{\frac{3}{2}}})}{(x + 2)^{5}}\\=&\frac{-5(x - 4)^{\frac{1}{3}}x^{2}}{(x + 2)^{6}(x + 4)^{\frac{1}{2}}} + \frac{x^{2}}{3(x - 4)^{\frac{2}{3}}(x + 2)^{5}(x + 4)^{\frac{1}{2}}} - \frac{(x - 4)^{\frac{1}{3}}x^{2}}{2(x + 2)^{5}(x + 4)^{\frac{3}{2}}} + \frac{2(x - 4)^{\frac{1}{3}}x}{(x + 4)^{\frac{1}{2}}(x + 2)^{5}} - \frac{50(x - 4)^{\frac{1}{3}}x}{(x + 2)^{6}(x + 4)^{\frac{1}{2}}} + \frac{10x}{3(x - 4)^{\frac{2}{3}}(x + 2)^{5}(x + 4)^{\frac{1}{2}}} - \frac{5(x - 4)^{\frac{1}{3}}x}{(x + 2)^{5}(x + 4)^{\frac{3}{2}}} + \frac{10(x - 4)^{\frac{1}{3}}}{(x + 2)^{5}(x + 4)^{\frac{1}{2}}} + \frac{25}{3(x - 4)^{\frac{2}{3}}(x + 2)^{5}(x + 4)^{\frac{1}{2}}} - \frac{25(x - 4)^{\frac{1}{3}}}{2(x + 2)^{5}(x + 4)^{\frac{3}{2}}} - \frac{125(x - 4)^{\frac{1}{3}}}{(x + 2)^{6}(x + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!