There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x + 5)}^{2})(\frac{{(x - 4)}^{1}}{3})(\frac{{(x + 4)}^{1}}{2})}{({(x + 2)}^{5})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{6}x^{4}}{(x + 2)^{5}} + \frac{\frac{5}{3}x^{3}}{(x + 2)^{5}} + \frac{\frac{3}{2}x^{2}}{(x + 2)^{5}} - \frac{\frac{80}{3}x}{(x + 2)^{5}} - \frac{\frac{200}{3}}{(x + 2)^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{6}x^{4}}{(x + 2)^{5}} + \frac{\frac{5}{3}x^{3}}{(x + 2)^{5}} + \frac{\frac{3}{2}x^{2}}{(x + 2)^{5}} - \frac{\frac{80}{3}x}{(x + 2)^{5}} - \frac{\frac{200}{3}}{(x + 2)^{5}}\right)}{dx}\\=&\frac{1}{6}(\frac{-5(1 + 0)}{(x + 2)^{6}})x^{4} + \frac{\frac{1}{6}*4x^{3}}{(x + 2)^{5}} + \frac{5}{3}(\frac{-5(1 + 0)}{(x + 2)^{6}})x^{3} + \frac{\frac{5}{3}*3x^{2}}{(x + 2)^{5}} + \frac{3}{2}(\frac{-5(1 + 0)}{(x + 2)^{6}})x^{2} + \frac{\frac{3}{2}*2x}{(x + 2)^{5}} - \frac{80}{3}(\frac{-5(1 + 0)}{(x + 2)^{6}})x - \frac{\frac{80}{3}}{(x + 2)^{5}} - \frac{200}{3}(\frac{-5(1 + 0)}{(x + 2)^{6}})\\=&\frac{-5x^{4}}{6(x + 2)^{6}} + \frac{2x^{3}}{3(x + 2)^{5}} - \frac{25x^{3}}{3(x + 2)^{6}} + \frac{5x^{2}}{(x + 2)^{5}} - \frac{15x^{2}}{2(x + 2)^{6}} + \frac{3x}{(x + 2)^{5}} + \frac{400x}{3(x + 2)^{6}} - \frac{80}{3(x + 2)^{5}} + \frac{1000}{3(x + 2)^{6}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!