There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-(arctan(x))}{x} - ln(\frac{x}{sqrt(1 + {x}^{2})}) - (\frac{1}{2}){(arctan(x))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-arctan(x)}{x} - ln(\frac{x}{sqrt(x^{2} + 1)}) - \frac{1}{2}arctan^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-arctan(x)}{x} - ln(\frac{x}{sqrt(x^{2} + 1)}) - \frac{1}{2}arctan^{2}(x)\right)}{dx}\\=&\frac{--arctan(x)}{x^{2}} - \frac{(\frac{(1)}{(1 + (x)^{2})})}{x} - \frac{(\frac{1}{sqrt(x^{2} + 1)} + \frac{x*-(2x + 0)*\frac{1}{2}}{(x^{2} + 1)(x^{2} + 1)^{\frac{1}{2}}})}{(\frac{x}{sqrt(x^{2} + 1)})} - \frac{1}{2}(\frac{2arctan(x)(1)}{(1 + (x)^{2})})\\=&\frac{arctan(x)}{x^{2}} + \frac{xsqrt(x^{2} + 1)}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{1}{x} - \frac{1}{(x^{2} + 1)x} - \frac{arctan(x)}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!