There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2({z}^{2}) - {x}^{2} - {y}^{2})}{({(sqrt({x}^{2} + {y}^{2} + {z}^{2}))}^{4})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2z^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}} - \frac{x^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}} - \frac{y^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2z^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}} - \frac{x^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}} - \frac{y^{2}}{sqrt(x^{2} + y^{2} + z^{2})^{4}}\right)}{dx}\\=&\frac{2z^{2}*-4(2x + 0 + 0)*\frac{1}{2}}{(x^{2} + y^{2} + z^{2})^{\frac{5}{2}}(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}} - \frac{2x}{sqrt(x^{2} + y^{2} + z^{2})^{4}} - \frac{x^{2}*-4(2x + 0 + 0)*\frac{1}{2}}{(x^{2} + y^{2} + z^{2})^{\frac{5}{2}}(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}} - \frac{y^{2}*-4(2x + 0 + 0)*\frac{1}{2}}{(x^{2} + y^{2} + z^{2})^{\frac{5}{2}}(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}\\=&\frac{-8z^{2}x}{(x^{2} + y^{2} + z^{2})^{3}} - \frac{2x}{sqrt(x^{2} + y^{2} + z^{2})^{4}} + \frac{4x^{3}}{(x^{2} + y^{2} + z^{2})^{3}} + \frac{4y^{2}x}{(x^{2} + y^{2} + z^{2})^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!