There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-3{x}^{4}}{({x}^{3} + 1)} + \frac{2x}{({x}^{3} + 1)} + \frac{3{x}^{2}({x}^{3} + 1)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-3x^{4}}{(x^{3} + 1)} + \frac{2x}{(x^{3} + 1)} + \frac{3}{2}x^{5} + \frac{3}{2}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-3x^{4}}{(x^{3} + 1)} + \frac{2x}{(x^{3} + 1)} + \frac{3}{2}x^{5} + \frac{3}{2}x^{2}\right)}{dx}\\=&-3(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})x^{4} - \frac{3*4x^{3}}{(x^{3} + 1)} + 2(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})x + \frac{2}{(x^{3} + 1)} + \frac{3}{2}*5x^{4} + \frac{3}{2}*2x\\=&\frac{9x^{6}}{(x^{3} + 1)^{2}} - \frac{12x^{3}}{(x^{3} + 1)} - \frac{6x^{3}}{(x^{3} + 1)^{2}} + \frac{2}{(x^{3} + 1)} + \frac{15x^{4}}{2} + 3x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!