There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(\frac{x}{(5 - 4x)}) + (1 - x)*2ln(\frac{(1 - x)}{(5 - 4x)}) + (1 - x)*3ln(\frac{(3 - 3x)}{(5 - 4x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(\frac{x}{(-4x + 5)}) + 2ln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) - 2xln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) + 3ln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)}) - 3xln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(\frac{x}{(-4x + 5)}) + 2ln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) - 2xln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) + 3ln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)}) - 3xln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})\right)}{dx}\\=&ln(\frac{x}{(-4x + 5)}) + \frac{x((\frac{-(-4 + 0)}{(-4x + 5)^{2}})x + \frac{1}{(-4x + 5)})}{(\frac{x}{(-4x + 5)})} + \frac{2(-(\frac{-(-4 + 0)}{(-4x + 5)^{2}})x - \frac{1}{(-4x + 5)} + (\frac{-(-4 + 0)}{(-4x + 5)^{2}}))}{(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})} - 2ln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) - \frac{2x(-(\frac{-(-4 + 0)}{(-4x + 5)^{2}})x - \frac{1}{(-4x + 5)} + (\frac{-(-4 + 0)}{(-4x + 5)^{2}}))}{(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})} + \frac{3(-3(\frac{-(-4 + 0)}{(-4x + 5)^{2}})x - \frac{3}{(-4x + 5)} + 3(\frac{-(-4 + 0)}{(-4x + 5)^{2}}))}{(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})} - 3ln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)}) - \frac{3x(-3(\frac{-(-4 + 0)}{(-4x + 5)^{2}})x - \frac{3}{(-4x + 5)} + 3(\frac{-(-4 + 0)}{(-4x + 5)^{2}}))}{(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})}\\=&ln(\frac{x}{(-4x + 5)}) + \frac{4x}{(-4x + 5)} + \frac{8x^{2}}{(-4x + 5)^{2}(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})} + \frac{2x}{(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})(-4x + 5)} + \frac{36x^{2}}{(-4x + 5)^{2}(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})} - 2ln(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)}) - \frac{16x}{(-4x + 5)^{2}(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})} + \frac{9x}{(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})(-4x + 5)} - \frac{72x}{(-4x + 5)^{2}(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})} + \frac{8}{(-4x + 5)^{2}(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})} - 3ln(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)}) + \frac{36}{(-4x + 5)^{2}(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})} - \frac{2}{(\frac{-x}{(-4x + 5)} + \frac{1}{(-4x + 5)})(-4x + 5)} - \frac{9}{(\frac{-3x}{(-4x + 5)} + \frac{3}{(-4x + 5)})(-4x + 5)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!