There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(k + pd(T - t))}{(nT)} + \frac{(ptd + a)}{T} + \frac{(lb - p(n - 1)l)}{n} + \frac{h(lT - 1)}{2} + \frac{1}{2}(1 + n)m(nttd - (n - 1)lTt + \frac{(l - d)tt}{2})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{k}{Tn} + \frac{pd}{n} - \frac{pdt}{Tn} + \frac{pdt}{T} + \frac{a}{T} + \frac{lb}{n} + \frac{pl}{n} - pl + \frac{1}{2}Tlh - \frac{1}{2}h + \frac{1}{4}dt^{2}mn - \frac{1}{2}Ttlmn^{2} + \frac{1}{4}t^{2}lmn + \frac{1}{2}dt^{2}mn^{2} - \frac{1}{4}dt^{2}m + \frac{1}{2}Ttlm + \frac{1}{4}t^{2}lm\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{k}{Tn} + \frac{pd}{n} - \frac{pdt}{Tn} + \frac{pdt}{T} + \frac{a}{T} + \frac{lb}{n} + \frac{pl}{n} - pl + \frac{1}{2}Tlh - \frac{1}{2}h + \frac{1}{4}dt^{2}mn - \frac{1}{2}Ttlmn^{2} + \frac{1}{4}t^{2}lmn + \frac{1}{2}dt^{2}mn^{2} - \frac{1}{4}dt^{2}m + \frac{1}{2}Ttlm + \frac{1}{4}t^{2}lm\right)}{dn}\\=&\frac{k*-1}{Tn^{2}} + \frac{pd*-1}{n^{2}} - \frac{pdt*-1}{Tn^{2}} + 0 + 0 + \frac{lb*-1}{n^{2}} + \frac{pl*-1}{n^{2}} + 0 + 0 + 0 + \frac{1}{4}dt^{2}m - \frac{1}{2}Ttlm*2n + \frac{1}{4}t^{2}lm + \frac{1}{2}dt^{2}m*2n + 0 + 0 + 0\\=&\frac{-k}{Tn^{2}} - \frac{pd}{n^{2}} + \frac{pdt}{Tn^{2}} - \frac{lb}{n^{2}} - \frac{pl}{n^{2}} + dt^{2}mn - Ttlmn + \frac{t^{2}lm}{4} + \frac{dt^{2}m}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!