Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (d+3.85)*(d+5)*(d+7.143)*(d+20)+d*(d+3.85)*(d+7.143)*(d+20)+d*(d+5)*(d+3.85)*(d+7.143) = d*(d+5)*(d+7.143)*(d+20) .
    Question type: Equation
    Solution:Original question:
     ( d +
77
20
)( d + 5)( d +
7143
1000
)( d + 20) + d ( d +
77
20
)( d +
7143
1000
)( d + 20) + d ( d + 5)( d +
77
20
)( d +
7143
1000
) = d ( d + 5)( d +
7143
1000
)( d + 20)
    Remove the bracket on the left of the equation:
     Left side of the equation = d ( d + 5)( d +
7143
1000
)( d + 20) +
77
20
( d + 5)( d +
7143
1000
)( d + 20) + d ( d +
77
20
)( d +
7143
1000
)( d + 20)
                                             = d d ( d +
7143
1000
)( d + 20) + d × 5( d +
7143
1000
)( d + 20) +
77
20
( d + 5)( d +
7143
1000
)( d + 20)
                                             = d d d ( d + 20) + d d ×
7143
1000
( d + 20) + d × 5( d +
7143
1000
)( d + 20)
                                             = d d d d + d d d × 20 + d d ×
7143
1000
( d + 20)
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d
                                             = d d d d + d d d × 20 + d d ×
7143
1000
d

    After the equation is converted into a general formula, there is a common factor:
    ( 1000d + 7143 )
    From
        1000d + 7143 = 0

    it is concluded that::
        d1=-
7143
1000

    Solutions that cannot be obtained by factorization:
        d2≈-11.231214 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。