Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1+0.12)/2(1+X/2) = (1+0.11/2)*(1+0.11/2) .
    Question type: Equation
    Solution:Original question:
     (1 +
3
25
) ÷ 2 × (1 + X ÷ 2) = (1 +
11
100
÷ 2)(1 +
11
100
÷ 2)
    Remove the bracket on the left of the equation:
     Left side of the equation = 1 ×
1
2
(1 + X ÷ 2) +
3
25
×
1
2
(1 + X ÷ 2)
                                             =
1
2
(1 + X ÷ 2) +
3
50
(1 + X ÷ 2)
                                             =
1
2
× 1 +
1
2
X ÷ 2 +
3
50
(1 + X ÷ 2)
                                             =
1
2
+
1
4
X +
3
50
(1 + X ÷ 2)
                                             =
1
2
+
1
4
X +
3
50
× 1 +
3
50
X ÷ 2
                                             =
1
2
+
1
4
X +
3
50
+
3
100
X
                                             =
14
25
+
7
25
X
    The equation is transformed into :
     
14
25
+
7
25
X = (1 +
11
100
÷ 2)(1 +
11
100
÷ 2)
    Remove the bracket on the right of the equation:
     Right side of the equation = 1(1 +
11
100
÷ 2) +
11
100
÷ 2 × (1 +
11
100
÷ 2)
                                               = 1(1 +
11
100
÷ 2) +
11
200
(1 +
11
100
÷ 2)
                                               = 1 × 1 + 1 ×
11
100
÷ 2 +
11
200
(1 +
11
100
÷ 2)
                                               = 1 +
11
200
+
11
200
(1 +
11
100
÷ 2)
                                               =
211
200
+
11
200
(1 +
11
100
÷ 2)
                                               =
211
200
+
11
200
× 1 +
11
200
×
11
100
÷ 2
                                               =
211
200
+
11
200
+
121
40000
                                               =
44521
40000
    The equation is transformed into :
     
14
25
+
7
25
X =
44521
40000

    Transposition :
     
7
25
X =
44521
40000
14
25

    Combine the items on the right of the equation:
     
7
25
X =
22121
40000

    The coefficient of the unknown number is reduced to 1 :
      X =
22121
40000
÷
7
25
        =
22121
40000
×
25
7
        =
22121
1600
×
1
7

    We obtained :
      X =
22121
11200
    This is the solution of the equation.

    Convert the result to decimal form :
      X = 1.975089



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。