数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数d(1 - m)z({(\frac{(-x - cz)}{(dmz)})}^{(\frac{m}{(m - 1)})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = dz(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})} - dmz(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( dz(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})} - dmz(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}\right)}{dx}\\=&dz((\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{dmz} - \frac{c}{dm}) + \frac{(\frac{m}{(m - 1)})(\frac{-1}{dmz} + 0)}{(\frac{-x}{dmz} - \frac{c}{dm})})) - dmz((\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{dmz} - \frac{c}{dm}) + \frac{(\frac{m}{(m - 1)})(\frac{-1}{dmz} + 0)}{(\frac{-x}{dmz} - \frac{c}{dm})}))\\=&\frac{-(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{dmz} - \frac{c}{dm})} + \frac{m(\frac{-x}{dmz} - \frac{c}{dm})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{dmz} - \frac{c}{dm})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回