数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{({-2}^{x} + 1)}{({2}^{(x + 1)} + 2)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{-2}^{x}}{({2}^{(x + 1)} + 2)} + \frac{1}{({2}^{(x + 1)} + 2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{-2}^{x}}{({2}^{(x + 1)} + 2)} + \frac{1}{({2}^{(x + 1)} + 2)}\right)}{dx}\\=&(\frac{-(({2}^{(x + 1)}((1 + 0)ln(2) + \frac{(x + 1)(0)}{(2)})) + 0)}{({2}^{(x + 1)} + 2)^{2}}){-2}^{x} + \frac{({-2}^{x}((1)ln(-2) + \frac{(x)(0)}{(-2)}))}{({2}^{(x + 1)} + 2)} + (\frac{-(({2}^{(x + 1)}((1 + 0)ln(2) + \frac{(x + 1)(0)}{(2)})) + 0)}{({2}^{(x + 1)} + 2)^{2}})\\=&\frac{-{2}^{(2x + 2)}ln(2)}{({2}^{(x + 1)} + 2)^{2}} + \frac{{-2}^{x}ln(-2)}{({2}^{(x + 1)} + 2)} - \frac{{2}^{(x + 1)}ln(2)}{({2}^{(x + 1)} + 2)^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回