数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数xxln(sin(x)) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}ln(sin(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}ln(sin(x))\right)}{dx}\\=&2xln(sin(x)) + \frac{x^{2}cos(x)}{(sin(x))}\\=&2xln(sin(x)) + \frac{x^{2}cos(x)}{sin(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2xln(sin(x)) + \frac{x^{2}cos(x)}{sin(x)}\right)}{dx}\\=&2ln(sin(x)) + \frac{2xcos(x)}{(sin(x))} + \frac{2xcos(x)}{sin(x)} + \frac{x^{2}*-cos(x)cos(x)}{sin^{2}(x)} + \frac{x^{2}*-sin(x)}{sin(x)}\\=&2ln(sin(x)) + \frac{4xcos(x)}{sin(x)} - \frac{x^{2}cos^{2}(x)}{sin^{2}(x)} - x^{2}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回