本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin({(\frac{(1 + sin(x))}{2})}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(\frac{1}{4}sin^{2}(x) + \frac{1}{2}sin(x) + \frac{1}{4})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(\frac{1}{4}sin^{2}(x) + \frac{1}{2}sin(x) + \frac{1}{4})\right)}{dx}\\=&(\frac{(\frac{1}{4}*2sin(x)cos(x) + \frac{1}{2}cos(x) + 0)}{((1 - (\frac{1}{4}sin^{2}(x) + \frac{1}{2}sin(x) + \frac{1}{4})^{2})^{\frac{1}{2}})})\\=&\frac{sin(x)cos(x)}{2(\frac{-1}{16}sin^{4}(x) - \frac{1}{4}sin^{3}(x) - \frac{3}{8}sin^{2}(x) - \frac{1}{4}sin(x) + \frac{15}{16})^{\frac{1}{2}}} + \frac{cos(x)}{2(\frac{-1}{16}sin^{4}(x) - \frac{1}{4}sin^{3}(x) - \frac{3}{8}sin^{2}(x) - \frac{1}{4}sin(x) + \frac{15}{16})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!