本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数a + bx + {e}^{2}x((f)cos(x) + (g)sin(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = a + bx + fxe^{2}cos(x) + gxe^{2}sin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( a + bx + fxe^{2}cos(x) + gxe^{2}sin(x)\right)}{dx}\\=&0 + b + fe^{2}cos(x) + fx*2e*0cos(x) + fxe^{2}*-sin(x) + ge^{2}sin(x) + gx*2e*0sin(x) + gxe^{2}cos(x)\\=&b + fe^{2}cos(x) - fxe^{2}sin(x) + ge^{2}sin(x) + gxe^{2}cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( b + fe^{2}cos(x) - fxe^{2}sin(x) + ge^{2}sin(x) + gxe^{2}cos(x)\right)}{dx}\\=&0 + f*2e*0cos(x) + fe^{2}*-sin(x) - fe^{2}sin(x) - fx*2e*0sin(x) - fxe^{2}cos(x) + g*2e*0sin(x) + ge^{2}cos(x) + ge^{2}cos(x) + gx*2e*0cos(x) + gxe^{2}*-sin(x)\\=&-2fe^{2}sin(x) - fxe^{2}cos(x) + 2ge^{2}cos(x) - gxe^{2}sin(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -2fe^{2}sin(x) - fxe^{2}cos(x) + 2ge^{2}cos(x) - gxe^{2}sin(x)\right)}{dx}\\=&-2f*2e*0sin(x) - 2fe^{2}cos(x) - fe^{2}cos(x) - fx*2e*0cos(x) - fxe^{2}*-sin(x) + 2g*2e*0cos(x) + 2ge^{2}*-sin(x) - ge^{2}sin(x) - gx*2e*0sin(x) - gxe^{2}cos(x)\\=& - 3fe^{2}cos(x) + fxe^{2}sin(x) - 3ge^{2}sin(x) - gxe^{2}cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 3fe^{2}cos(x) + fxe^{2}sin(x) - 3ge^{2}sin(x) - gxe^{2}cos(x)\right)}{dx}\\=& - 3f*2e*0cos(x) - 3fe^{2}*-sin(x) + fe^{2}sin(x) + fx*2e*0sin(x) + fxe^{2}cos(x) - 3g*2e*0sin(x) - 3ge^{2}cos(x) - ge^{2}cos(x) - gx*2e*0cos(x) - gxe^{2}*-sin(x)\\=&4fe^{2}sin(x) + fxe^{2}cos(x) - 4ge^{2}cos(x) + gxe^{2}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!