本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{cos(sqrt(3)x)}{({e}^{x})} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{(-x)}cos(xsqrt(3))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{(-x)}cos(xsqrt(3))\right)}{dx}\\=&({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))cos(xsqrt(3)) + {e}^{(-x)}*-sin(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}})\\=&-{e}^{(-x)}cos(xsqrt(3)) - {e}^{(-x)}sin(xsqrt(3))sqrt(3)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -{e}^{(-x)}cos(xsqrt(3)) - {e}^{(-x)}sin(xsqrt(3))sqrt(3)\right)}{dx}\\=&-({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))cos(xsqrt(3)) - {e}^{(-x)}*-sin(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}}) - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))sin(xsqrt(3))sqrt(3) - {e}^{(-x)}cos(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}})sqrt(3) - {e}^{(-x)}sin(xsqrt(3))*0*\frac{1}{2}*3^{\frac{1}{2}}\\=& - {e}^{(-x)}cos(xsqrt(3))sqrt(3)^{2} + 2{e}^{(-x)}sin(xsqrt(3))sqrt(3) + {e}^{(-x)}cos(xsqrt(3))\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - {e}^{(-x)}cos(xsqrt(3))sqrt(3)^{2} + 2{e}^{(-x)}sin(xsqrt(3))sqrt(3) + {e}^{(-x)}cos(xsqrt(3))\right)}{dx}\\=& - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))cos(xsqrt(3))sqrt(3)^{2} - {e}^{(-x)}*-sin(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}})sqrt(3)^{2} - {e}^{(-x)}cos(xsqrt(3))*2(3)^{\frac{1}{2}}*0*\frac{1}{2}*3^{\frac{1}{2}} + 2({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))sin(xsqrt(3))sqrt(3) + 2{e}^{(-x)}cos(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}})sqrt(3) + 2{e}^{(-x)}sin(xsqrt(3))*0*\frac{1}{2}*3^{\frac{1}{2}} + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))cos(xsqrt(3)) + {e}^{(-x)}*-sin(xsqrt(3))(sqrt(3) + x*0*\frac{1}{2}*3^{\frac{1}{2}})\\=&3{e}^{(-x)}cos(xsqrt(3))sqrt(3)^{2} + {e}^{(-x)}sin(xsqrt(3))sqrt(3)^{3} - 3{e}^{(-x)}sin(xsqrt(3))sqrt(3) - {e}^{(-x)}cos(xsqrt(3))\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!