数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数4{e}^{(\frac{-({(x - 6)}^{2})}{5})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 4{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 4{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}\right)}{dx}\\=&4({e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}((\frac{-1}{5}*2x + \frac{12}{5} + 0)ln(e) + \frac{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})(0)}{(e)}))\\=&\frac{-8x{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{5} + \frac{48{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{5}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-8x{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{5} + \frac{48{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{5}\right)}{dx}\\=&\frac{-8{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{5} - \frac{8x({e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}((\frac{-1}{5}*2x + \frac{12}{5} + 0)ln(e) + \frac{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})(0)}{(e)}))}{5} + \frac{48({e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}((\frac{-1}{5}*2x + \frac{12}{5} + 0)ln(e) + \frac{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})(0)}{(e)}))}{5}\\=&\frac{536{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{25} + \frac{16x^{2}{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{25} - \frac{192x{e}^{(\frac{-1}{5}x^{2} + \frac{12}{5}x - \frac{36}{5})}}{25}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回