数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(2ln(x) + {x}^{3})}{(3ln(x) + {x}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2ln(x)}{(3ln(x) + x^{2})} + \frac{x^{3}}{(3ln(x) + x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2ln(x)}{(3ln(x) + x^{2})} + \frac{x^{3}}{(3ln(x) + x^{2})}\right)}{dx}\\=&2(\frac{-(\frac{3}{(x)} + 2x)}{(3ln(x) + x^{2})^{2}})ln(x) + \frac{2}{(3ln(x) + x^{2})(x)} + (\frac{-(\frac{3}{(x)} + 2x)}{(3ln(x) + x^{2})^{2}})x^{3} + \frac{3x^{2}}{(3ln(x) + x^{2})}\\=&\frac{-6ln(x)}{(3ln(x) + x^{2})^{2}x} - \frac{4xln(x)}{(3ln(x) + x^{2})^{2}} + \frac{2}{(3ln(x) + x^{2})x} - \frac{3x^{2}}{(3ln(x) + x^{2})^{2}} - \frac{2x^{4}}{(3ln(x) + x^{2})^{2}} + \frac{3x^{2}}{(3ln(x) + x^{2})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回