本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(1 + t) - ln(1 - t) - 2t 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(t + 1) - ln(-t + 1) - 2t\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(t + 1) - ln(-t + 1) - 2t\right)}{dt}\\=&\frac{(1 + 0)}{(t + 1)} - \frac{(-1 + 0)}{(-t + 1)} - 2\\=&\frac{1}{(t + 1)} + \frac{1}{(-t + 1)} - 2\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!