数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sin(x + 120) - sin(x))}{(sin(x + 2400) - sin(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x + 120)}{(sin(x + 2400) - sin(x))} - \frac{sin(x)}{(sin(x + 2400) - sin(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x + 120)}{(sin(x + 2400) - sin(x))} - \frac{sin(x)}{(sin(x + 2400) - sin(x))}\right)}{dx}\\=&(\frac{-(cos(x + 2400)(1 + 0) - cos(x))}{(sin(x + 2400) - sin(x))^{2}})sin(x + 120) + \frac{cos(x + 120)(1 + 0)}{(sin(x + 2400) - sin(x))} - (\frac{-(cos(x + 2400)(1 + 0) - cos(x))}{(sin(x + 2400) - sin(x))^{2}})sin(x) - \frac{cos(x)}{(sin(x + 2400) - sin(x))}\\=&\frac{-sin(x + 120)cos(x + 2400)}{(sin(x + 2400) - sin(x))^{2}} + \frac{sin(x + 120)cos(x)}{(sin(x + 2400) - sin(x))^{2}} + \frac{cos(x + 120)}{(sin(x + 2400) - sin(x))} + \frac{sin(x)cos(x + 2400)}{(sin(x + 2400) - sin(x))^{2}} - \frac{sin(x)cos(x)}{(sin(x + 2400) - sin(x))^{2}} - \frac{cos(x)}{(sin(x + 2400) - sin(x))}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回