数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 3 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数16{(1 - \frac{({(x)}^{2})}{9})}^{\frac{1}{2}} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 16(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 16(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}\right)}{dx}\\=&16(\frac{\frac{1}{2}(\frac{-1}{9}*2x + 0)}{(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}})\\=&\frac{-16x}{9(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-16x}{9(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-16(\frac{\frac{-1}{2}(\frac{-1}{9}*2x + 0)}{(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}})x}{9} - \frac{16}{9(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-16x^{2}}{81(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}} - \frac{16}{9(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-16x^{2}}{81(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}} - \frac{16}{9(\frac{-1}{9}x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-16(\frac{\frac{-3}{2}(\frac{-1}{9}*2x + 0)}{(\frac{-1}{9}x^{2} + 1)^{\frac{5}{2}}})x^{2}}{81} - \frac{16*2x}{81(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}} - \frac{16(\frac{\frac{-1}{2}(\frac{-1}{9}*2x + 0)}{(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}})}{9}\\=&\frac{-16x^{3}}{243(\frac{-1}{9}x^{2} + 1)^{\frac{5}{2}}} - \frac{16x}{27(\frac{-1}{9}x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回