数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt(\frac{(1 + sin(x))}{cos(x)})) - \frac{tan(x)}{(2{(sin(x))}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})) - \frac{\frac{1}{2}tan(x)}{sin^{2}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})) - \frac{\frac{1}{2}tan(x)}{sin^{2}(x)}\right)}{dx}\\=&\frac{(\frac{sin(x)}{cos^{2}(x)} + \frac{cos(x)}{cos(x)} + \frac{sin(x)sin(x)}{cos^{2}(x)})*\frac{1}{2}}{(sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)}))(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})^{\frac{1}{2}}} - \frac{\frac{1}{2}*-2cos(x)tan(x)}{sin^{3}(x)} - \frac{\frac{1}{2}sec^{2}(x)(1)}{sin^{2}(x)}\\=&\frac{sin(x)}{2(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})^{\frac{1}{2}}cos^{2}(x)sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})} + \frac{1}{2(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})^{\frac{1}{2}}sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})} + \frac{sin^{2}(x)}{2(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})^{\frac{1}{2}}cos^{2}(x)sqrt(\frac{1}{cos(x)} + \frac{sin(x)}{cos(x)})} + \frac{cos(x)tan(x)}{sin^{3}(x)} - \frac{sec^{2}(x)}{2sin^{2}(x)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回