数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{e}^{(-ikx - a{x}^{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{(-ikx - ax^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{(-ikx - ax^{2})}\right)}{dx}\\=&({e}^{(-ikx - ax^{2})}((-ik - a*2x)ln(e) + \frac{(-ikx - ax^{2})(0)}{(e)}))\\=&-ik{e}^{(-ikx - ax^{2})} - 2ax{e}^{(-ikx - ax^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -ik{e}^{(-ikx - ax^{2})} - 2ax{e}^{(-ikx - ax^{2})}\right)}{dx}\\=&-ik({e}^{(-ikx - ax^{2})}((-ik - a*2x)ln(e) + \frac{(-ikx - ax^{2})(0)}{(e)})) - 2a{e}^{(-ikx - ax^{2})} - 2ax({e}^{(-ikx - ax^{2})}((-ik - a*2x)ln(e) + \frac{(-ikx - ax^{2})(0)}{(e)}))\\=&i^{2}k^{2}{e}^{(-ikx - ax^{2})} + 4ikax{e}^{(-ikx - ax^{2})} - 2a{e}^{(-ikx - ax^{2})} + 4a^{2}x^{2}{e}^{(-ikx - ax^{2})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回