数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数({2}^{\frac{1}{2}}sin(3.14x - \frac{3.14}{4}) + 2){\frac{1}{x}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1.4142135623731sin(3.14x - 0.785)}{x^{\frac{1}{2}}} + \frac{2}{x^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1.4142135623731sin(3.14x - 0.785)}{x^{\frac{1}{2}}} + \frac{2}{x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{1.4142135623731*-0.5sin(3.14x - 0.785)}{x^{\frac{3}{2}}} + \frac{1.4142135623731cos(3.14x - 0.785)(3.14 + 0)}{x^{\frac{1}{2}}} + \frac{2*-0.5}{x^{\frac{3}{2}}}\\=&\frac{-0.7071067811865sin(3.14x - 0.785)}{x^{\frac{3}{2}}} + \frac{4.44063058585152cos(3.14x - 0.785)}{x^{\frac{1}{2}}} - \frac{1}{x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回