数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(17470000 - x)(33634 + x)}{(x - 30000)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{x^{2}}{(x - 30000)} + \frac{17436366x}{(x - 30000)} + \frac{587585980000}{(x - 30000)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{x^{2}}{(x - 30000)} + \frac{17436366x}{(x - 30000)} + \frac{587585980000}{(x - 30000)}\right)}{dx}\\=& - (\frac{-(1 + 0)}{(x - 30000)^{2}})x^{2} - \frac{2x}{(x - 30000)} + 17436366(\frac{-(1 + 0)}{(x - 30000)^{2}})x + \frac{17436366}{(x - 30000)} + 587585980000(\frac{-(1 + 0)}{(x - 30000)^{2}})\\=&\frac{x^{2}}{(x - 30000)^{2}} - \frac{2x}{(x - 30000)} - \frac{17436366x}{(x - 30000)^{2}} - \frac{587585980000}{(x - 30000)^{2}} + \frac{17436366}{(x - 30000)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回