数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{xg}{(2pr(0.9045 - 0.07249(r{\frac{1}{(\frac{x}{o})}}^{\frac{1}{3}} + 0.4293({r}^{2}{\frac{1}{(\frac{x}{o})}}^{(\frac{2}{3})}))))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{gx}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{gx}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\right)}{dx}\\=&(\frac{-(\frac{-0.14498pr^{2}o*-1}{x^{2}} - \frac{0.062239914pr^{2}o*-1}{x^{2}} + 0)}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)^{2}})gx + \frac{g}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\=&\frac{-0.14498gpr^{2}o}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)x} - \frac{0.062239914gpr^{2}o}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)x} + \frac{g}{(\frac{-0.14498pr^{2}o}{x} - \frac{0.062239914pr^{2}o}{x} + 1.809pr)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回