数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arctan((2{x}^{\frac{1}{2}} - 1){\frac{1}{3}}^{\frac{1}{2}}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(2{x}^{\frac{1}{2}}{\frac{1}{3}}^{\frac{1}{2}} - {\frac{1}{3}}^{\frac{1}{2}})\right)}{dx}\\=&(\frac{(2({x}^{\frac{1}{2}}((0)ln(x) + \frac{(\frac{1}{2})(1)}{(x)})){\frac{1}{3}}^{\frac{1}{2}} + 2{x}^{\frac{1}{2}}({\frac{1}{3}}^{\frac{1}{2}}((0)ln(\frac{1}{3}) + \frac{(\frac{1}{2})(0)}{(\frac{1}{3})})) - ({\frac{1}{3}}^{\frac{1}{2}}((0)ln(\frac{1}{3}) + \frac{(\frac{1}{2})(0)}{(\frac{1}{3})})))}{(1 + (2{x}^{\frac{1}{2}}{\frac{1}{3}}^{\frac{1}{2}} - {\frac{1}{3}}^{\frac{1}{2}})^{2})})\\=&\frac{1^{\frac{1}{2}}}{3^{\frac{1}{2}}(\frac{4}{3}x - \frac{4}{3}x^{\frac{1}{2}} + \frac{4}{3})x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回