数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{(tan({x}^{2}) - x)}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan^{3}(x^{2}) - 3xtan^{2}(x^{2}) + 3x^{2}tan(x^{2}) - x^{3}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan^{3}(x^{2}) - 3xtan^{2}(x^{2}) + 3x^{2}tan(x^{2}) - x^{3}\right)}{dx}\\=&3tan^{2}(x^{2})sec^{2}(x^{2})(2x) - 3tan^{2}(x^{2}) - 3x*2tan(x^{2})sec^{2}(x^{2})(2x) + 3*2xtan(x^{2}) + 3x^{2}sec^{2}(x^{2})(2x) - 3x^{2}\\=&6xtan^{2}(x^{2})sec^{2}(x^{2}) - 3tan^{2}(x^{2}) - 12x^{2}tan(x^{2})sec^{2}(x^{2}) + 6xtan(x^{2}) + 6x^{3}sec^{2}(x^{2}) - 3x^{2}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回