数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数sin(5)x{({tan(x)}^{2} - x)}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xsin(5)tan^{6}(x) - 3x^{2}sin(5)tan^{4}(x) + 3x^{3}sin(5)tan^{2}(x) - x^{4}sin(5)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsin(5)tan^{6}(x) - 3x^{2}sin(5)tan^{4}(x) + 3x^{3}sin(5)tan^{2}(x) - x^{4}sin(5)\right)}{dx}\\=&sin(5)tan^{6}(x) + xcos(5)*0tan^{6}(x) + xsin(5)*6tan^{5}(x)sec^{2}(x)(1) - 3*2xsin(5)tan^{4}(x) - 3x^{2}cos(5)*0tan^{4}(x) - 3x^{2}sin(5)*4tan^{3}(x)sec^{2}(x)(1) + 3*3x^{2}sin(5)tan^{2}(x) + 3x^{3}cos(5)*0tan^{2}(x) + 3x^{3}sin(5)*2tan(x)sec^{2}(x)(1) - 4x^{3}sin(5) - x^{4}cos(5)*0\\=&sin(5)tan^{6}(x) + 6xsin(5)tan^{5}(x)sec^{2}(x) - 12x^{2}sin(5)tan^{3}(x)sec^{2}(x) + 6x^{3}sin(5)tan(x)sec^{2}(x) + 9x^{2}sin(5)tan^{2}(x) - 6xsin(5)tan^{4}(x) - 4x^{3}sin(5)\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回