数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{cos(x)}{cos(2x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos(x)}{cos(2x)}\right)}{dx}\\=&\frac{-sin(x)}{cos(2x)} + \frac{cos(x)sin(2x)*2}{cos^{2}(2x)}\\=&\frac{2sin(2x)cos(x)}{cos^{2}(2x)} - \frac{sin(x)}{cos(2x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2sin(2x)cos(x)}{cos^{2}(2x)} - \frac{sin(x)}{cos(2x)}\right)}{dx}\\=&\frac{2cos(2x)*2cos(x)}{cos^{2}(2x)} + \frac{2sin(2x)*-sin(x)}{cos^{2}(2x)} + \frac{2sin(2x)cos(x)*2sin(2x)*2}{cos^{3}(2x)} - \frac{cos(x)}{cos(2x)} - \frac{sin(x)sin(2x)*2}{cos^{2}(2x)}\\=&\frac{4cos(x)}{cos(2x)} + \frac{8sin^{2}(2x)cos(x)}{cos^{3}(2x)} - \frac{2sin(x)sin(2x)}{cos^{2}(2x)} - \frac{cos(x)}{cos(2x)} - \frac{2sin(2x)sin(x)}{cos^{2}(2x)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回