数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(x)}{(sin(x) + cos(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x)}{(sin(x) + cos(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x)}{(sin(x) + cos(x))}\right)}{dx}\\=&(\frac{-(cos(x) + -sin(x))}{(sin(x) + cos(x))^{2}})ln(x) + \frac{1}{(sin(x) + cos(x))(x)}\\=&\frac{-ln(x)cos(x)}{(sin(x) + cos(x))^{2}} + \frac{ln(x)sin(x)}{(sin(x) + cos(x))^{2}} + \frac{1}{(sin(x) + cos(x))x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-ln(x)cos(x)}{(sin(x) + cos(x))^{2}} + \frac{ln(x)sin(x)}{(sin(x) + cos(x))^{2}} + \frac{1}{(sin(x) + cos(x))x}\right)}{dx}\\=&-(\frac{-2(cos(x) + -sin(x))}{(sin(x) + cos(x))^{3}})ln(x)cos(x) - \frac{cos(x)}{(sin(x) + cos(x))^{2}(x)} - \frac{ln(x)*-sin(x)}{(sin(x) + cos(x))^{2}} + (\frac{-2(cos(x) + -sin(x))}{(sin(x) + cos(x))^{3}})ln(x)sin(x) + \frac{sin(x)}{(sin(x) + cos(x))^{2}(x)} + \frac{ln(x)cos(x)}{(sin(x) + cos(x))^{2}} + \frac{(\frac{-(cos(x) + -sin(x))}{(sin(x) + cos(x))^{2}})}{x} + \frac{-1}{(sin(x) + cos(x))x^{2}}\\=&\frac{2ln(x)cos^{2}(x)}{(sin(x) + cos(x))^{3}} - \frac{4ln(x)sin(x)cos(x)}{(sin(x) + cos(x))^{3}} - \frac{2cos(x)}{(sin(x) + cos(x))^{2}x} + \frac{ln(x)sin(x)}{(sin(x) + cos(x))^{2}} + \frac{2ln(x)sin^{2}(x)}{(sin(x) + cos(x))^{3}} + \frac{2sin(x)}{(sin(x) + cos(x))^{2}x} + \frac{ln(x)cos(x)}{(sin(x) + cos(x))^{2}} - \frac{1}{(sin(x) + cos(x))x^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回