数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数({x}^{2} + sqrt(3)x + \frac{3}{4})(36 - {x}^{2} + x - \frac{1}{4}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - x^{3}sqrt(3) + x^{2}sqrt(3) + \frac{143}{4}xsqrt(3) - x^{4} + x^{3} + 35x^{2} + \frac{3}{4}x + \frac{429}{16}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - x^{3}sqrt(3) + x^{2}sqrt(3) + \frac{143}{4}xsqrt(3) - x^{4} + x^{3} + 35x^{2} + \frac{3}{4}x + \frac{429}{16}\right)}{dx}\\=& - 3x^{2}sqrt(3) - x^{3}*0*\frac{1}{2}*3^{\frac{1}{2}} + 2xsqrt(3) + x^{2}*0*\frac{1}{2}*3^{\frac{1}{2}} + \frac{143}{4}sqrt(3) + \frac{143}{4}x*0*\frac{1}{2}*3^{\frac{1}{2}} - 4x^{3} + 3x^{2} + 35*2x + \frac{3}{4} + 0\\=& - 3x^{2}sqrt(3) + 2xsqrt(3) + \frac{143sqrt(3)}{4} - 4x^{3} + 3x^{2} + 70x + \frac{3}{4}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回