数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{{(1 + {x}^{2})}^{1}}{2} - x) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{1}{2}x^{2} + \frac{1}{2} - x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{1}{2}x^{2} + \frac{1}{2} - x)\right)}{dx}\\=&\frac{(\frac{1}{2}*2x + 0 - 1)}{(\frac{1}{2}x^{2} + \frac{1}{2} - x)}\\=&\frac{x}{(\frac{1}{2}x^{2} - x + \frac{1}{2})} - \frac{1}{(\frac{1}{2}x^{2} - x + \frac{1}{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x}{(\frac{1}{2}x^{2} - x + \frac{1}{2})} - \frac{1}{(\frac{1}{2}x^{2} - x + \frac{1}{2})}\right)}{dx}\\=&(\frac{-(\frac{1}{2}*2x - 1 + 0)}{(\frac{1}{2}x^{2} - x + \frac{1}{2})^{2}})x + \frac{1}{(\frac{1}{2}x^{2} - x + \frac{1}{2})} - (\frac{-(\frac{1}{2}*2x - 1 + 0)}{(\frac{1}{2}x^{2} - x + \frac{1}{2})^{2}})\\=&\frac{-x^{2}}{(\frac{1}{2}x^{2} - x + \frac{1}{2})^{2}} + \frac{2x}{(\frac{1}{2}x^{2} - x + \frac{1}{2})^{2}} + \frac{1}{(\frac{1}{2}x^{2} - x + \frac{1}{2})} - \frac{1}{(\frac{1}{2}x^{2} - x + \frac{1}{2})^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回