数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数xsqrt(\frac{(x - 1)}{sqrt(x + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsqrt(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)})\right)}{dx}\\=&sqrt(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)}) + \frac{x(\frac{1}{sqrt(x + 1)} + \frac{x*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} - \frac{-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}})*\frac{1}{2}}{(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)})^{\frac{1}{2}}}\\=&sqrt(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)}) + \frac{x}{2(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)})^{\frac{1}{2}}sqrt(x + 1)} - \frac{x^{2}}{4(x + 1)^{\frac{3}{2}}(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)})^{\frac{1}{2}}} + \frac{x}{4(x + 1)^{\frac{3}{2}}(\frac{x}{sqrt(x + 1)} - \frac{1}{sqrt(x + 1)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回