数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt(xcos(x)(sqrt(3 - 2{e}^{x})))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(xcos(x)sqrt(-2{e}^{x} + 3)))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(xcos(x)sqrt(-2{e}^{x} + 3)))\right)}{dx}\\=&\frac{(cos(x)sqrt(-2{e}^{x} + 3) + x*-sin(x)sqrt(-2{e}^{x} + 3) + \frac{xcos(x)(-2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)*\frac{1}{2}}{(-2{e}^{x} + 3)^{\frac{1}{2}}})*\frac{1}{2}}{(sqrt(xcos(x)sqrt(-2{e}^{x} + 3)))(xcos(x)sqrt(-2{e}^{x} + 3))^{\frac{1}{2}}}\\=&\frac{cos^{\frac{1}{2}}(x)sqrt(-2{e}^{x} + 3)^{\frac{1}{2}}}{2x^{\frac{1}{2}}sqrt(xcos(x)sqrt(-2{e}^{x} + 3))} - \frac{x^{\frac{1}{2}}sin(x)sqrt(-2{e}^{x} + 3)^{\frac{1}{2}}}{2cos^{\frac{1}{2}}(x)sqrt(xcos(x)sqrt(-2{e}^{x} + 3))} - \frac{x^{\frac{1}{2}}{e}^{x}cos^{\frac{1}{2}}(x)}{2(-2{e}^{x} + 3)^{\frac{1}{2}}sqrt(xcos(x)sqrt(-2{e}^{x} + 3))sqrt(-2{e}^{x} + 3)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回