数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数2xtan(x){sec(({x}^{2})tan(x))}^{2} + {x}^{2}{(sec(x))}^{2}{(sec(({x}^{2})tan(x)))}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2xtan(x)sec^{2}(x^{2}tan(x)) + x^{2}sec^{2}(x)sec^{2}(x^{2}tan(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2xtan(x)sec^{2}(x^{2}tan(x)) + x^{2}sec^{2}(x)sec^{2}(x^{2}tan(x))\right)}{dx}\\=&2tan(x)sec^{2}(x^{2}tan(x)) + 2xsec^{2}(x)(1)sec^{2}(x^{2}tan(x)) + 2xtan(x)*2sec^{2}(x^{2}tan(x))tan(x^{2}tan(x))(2xtan(x) + x^{2}sec^{2}(x)(1)) + 2xsec^{2}(x)sec^{2}(x^{2}tan(x)) + x^{2}*2sec^{2}(x)tan(x)sec^{2}(x^{2}tan(x)) + x^{2}sec^{2}(x)*2sec^{2}(x^{2}tan(x))tan(x^{2}tan(x))(2xtan(x) + x^{2}sec^{2}(x)(1))\\=&2tan(x)sec^{2}(x^{2}tan(x)) + 4xsec^{2}(x)sec^{2}(x^{2}tan(x)) + 4x^{3}tan(x^{2}tan(x))tan(x)sec^{2}(x)sec^{2}(x^{2}tan(x)) + 4x^{3}tan(x^{2}tan(x))tan(x)sec^{2}(x^{2}tan(x))sec^{2}(x) + 2x^{2}tan(x)sec^{2}(x)sec^{2}(x^{2}tan(x)) + 8x^{2}tan(x^{2}tan(x))tan^{2}(x)sec^{2}(x^{2}tan(x)) + 2x^{4}tan(x^{2}tan(x))sec^{4}(x)sec^{2}(x^{2}tan(x))\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回