数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sin(x))}{cot(x + 1)} + {x}^{sin(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{cot(x + 1)} + {x}^{sin(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{cot(x + 1)} + {x}^{sin(x)}\right)}{dx}\\=&\frac{cos(x)}{cot(x + 1)} + \frac{sin(x)csc^{2}(x + 1)(1 + 0)}{cot^{2}(x + 1)} + ({x}^{sin(x)}((cos(x))ln(x) + \frac{(sin(x))(1)}{(x)}))\\=&\frac{cos(x)}{cot(x + 1)} + \frac{sin(x)csc^{2}(x + 1)}{cot^{2}(x + 1)} + {x}^{sin(x)}ln(x)cos(x) + \frac{{x}^{sin(x)}sin(x)}{x}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回