数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(\frac{30({x}^{2} - 2{x}^{3} + {x}^{4})}{(\frac{19}{10}sin(xpi))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{300}{19}x^{2}}{sin(pix)} - \frac{\frac{600}{19}x^{3}}{sin(pix)} + \frac{\frac{300}{19}x^{4}}{sin(pix)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{300}{19}x^{2}}{sin(pix)} - \frac{\frac{600}{19}x^{3}}{sin(pix)} + \frac{\frac{300}{19}x^{4}}{sin(pix)}\right)}{dx}\\=&\frac{\frac{300}{19}*2x}{sin(pix)} + \frac{\frac{300}{19}x^{2}*-cos(pix)pi}{sin^{2}(pix)} - \frac{\frac{600}{19}*3x^{2}}{sin(pix)} - \frac{\frac{600}{19}x^{3}*-cos(pix)pi}{sin^{2}(pix)} + \frac{\frac{300}{19}*4x^{3}}{sin(pix)} + \frac{\frac{300}{19}x^{4}*-cos(pix)pi}{sin^{2}(pix)}\\=&\frac{600x}{19sin(pix)} - \frac{300pix^{2}cos(pix)}{19sin^{2}(pix)} - \frac{1800x^{2}}{19sin(pix)} + \frac{600pix^{3}cos(pix)}{19sin^{2}(pix)} + \frac{1200x^{3}}{19sin(pix)} - \frac{300pix^{4}cos(pix)}{19sin^{2}(pix)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回