数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{-(4{x}^{3} - 9{x}^{2} + \frac{1}{2}x + 6)}{(4{x}^{2} - 6x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-4x^{3}}{(4x^{2} - 6x)} + \frac{9x^{2}}{(4x^{2} - 6x)} - \frac{\frac{1}{2}x}{(4x^{2} - 6x)} - \frac{6}{(4x^{2} - 6x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-4x^{3}}{(4x^{2} - 6x)} + \frac{9x^{2}}{(4x^{2} - 6x)} - \frac{\frac{1}{2}x}{(4x^{2} - 6x)} - \frac{6}{(4x^{2} - 6x)}\right)}{dx}\\=&-4(\frac{-(4*2x - 6)}{(4x^{2} - 6x)^{2}})x^{3} - \frac{4*3x^{2}}{(4x^{2} - 6x)} + 9(\frac{-(4*2x - 6)}{(4x^{2} - 6x)^{2}})x^{2} + \frac{9*2x}{(4x^{2} - 6x)} - \frac{1}{2}(\frac{-(4*2x - 6)}{(4x^{2} - 6x)^{2}})x - \frac{\frac{1}{2}}{(4x^{2} - 6x)} - 6(\frac{-(4*2x - 6)}{(4x^{2} - 6x)^{2}})\\=&\frac{32x^{4}}{(4x^{2} - 6x)^{2}} - \frac{96x^{3}}{(4x^{2} - 6x)^{2}} - \frac{12x^{2}}{(4x^{2} - 6x)} + \frac{58x^{2}}{(4x^{2} - 6x)^{2}} + \frac{18x}{(4x^{2} - 6x)} + \frac{45x}{(4x^{2} - 6x)^{2}} - \frac{1}{2(4x^{2} - 6x)} - \frac{36}{(4x^{2} - 6x)^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回