本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数7{(x + {(7x + {(7x)}^{\frac{1}{2}})}^{\frac{1}{2}})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 7(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 7(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}\right)}{dx}\\=&7(\frac{\frac{1}{2}(1 + (\frac{\frac{1}{2}(7 + \frac{7^{\frac{1}{2}}*\frac{1}{2}}{x^{\frac{1}{2}}})}{(7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}}}))}{(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}})\\=&\frac{7*7^{\frac{1}{2}}}{8(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}(7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{49}{4(7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}}(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}} + \frac{7}{2(x + (7x + 7^{\frac{1}{2}}x^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!