数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 3 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{e}^{((\frac{-1}{2})({x}^{2}))} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{(\frac{-1}{2}x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{(\frac{-1}{2}x^{2})}\right)}{dx}\\=&({e}^{(\frac{-1}{2}x^{2})}((\frac{-1}{2}*2x)ln(e) + \frac{(\frac{-1}{2}x^{2})(0)}{(e)}))\\=&-x{e}^{(\frac{-1}{2}x^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -x{e}^{(\frac{-1}{2}x^{2})}\right)}{dx}\\=&-{e}^{(\frac{-1}{2}x^{2})} - x({e}^{(\frac{-1}{2}x^{2})}((\frac{-1}{2}*2x)ln(e) + \frac{(\frac{-1}{2}x^{2})(0)}{(e)}))\\=&-{e}^{(\frac{-1}{2}x^{2})} + x^{2}{e}^{(\frac{-1}{2}x^{2})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -{e}^{(\frac{-1}{2}x^{2})} + x^{2}{e}^{(\frac{-1}{2}x^{2})}\right)}{dx}\\=&-({e}^{(\frac{-1}{2}x^{2})}((\frac{-1}{2}*2x)ln(e) + \frac{(\frac{-1}{2}x^{2})(0)}{(e)})) + 2x{e}^{(\frac{-1}{2}x^{2})} + x^{2}({e}^{(\frac{-1}{2}x^{2})}((\frac{-1}{2}*2x)ln(e) + \frac{(\frac{-1}{2}x^{2})(0)}{(e)}))\\=&3x{e}^{(\frac{-1}{2}x^{2})} - x^{3}{e}^{(\frac{-1}{2}x^{2})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回