数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数-82.645x{\frac{1}{(x + 21.19)}}^{2} + \frac{82.645}{(x + 21.19)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-82.645x}{(x + 21.19)(x + 21.19)} + \frac{82.645}{(x + 21.19)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-82.645x}{(x + 21.19)(x + 21.19)} + \frac{82.645}{(x + 21.19)}\right)}{dx}\\=&\frac{-82.645(\frac{-(1 + 0)}{(x + 21.19)^{2}})x}{(x + 21.19)} - \frac{82.645(\frac{-(1 + 0)}{(x + 21.19)^{2}})x}{(x + 21.19)} - \frac{82.645}{(x + 21.19)(x + 21.19)} + 82.645(\frac{-(1 + 0)}{(x + 21.19)^{2}})\\=&\frac{82.645x}{(x + 21.19)(x + 21.19)(x + 21.19)} + \frac{82.645x}{(x + 21.19)(x + 21.19)(x + 21.19)} - \frac{82.645}{(x + 21.19)(x + 21.19)} - \frac{82.645}{(x + 21.19)(x + 21.19)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回