数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(sec(2)x + tan(2)x) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(xsec(2) + xtan(2))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(xsec(2) + xtan(2))\right)}{dx}\\=&\frac{(sec(2) + xsec(2)tan(2)*0 + tan(2) + xsec^{2}(2)(0))}{(xsec(2) + xtan(2))}\\=&\frac{sec(2)}{(xsec(2) + xtan(2))} + \frac{tan(2)}{(xsec(2) + xtan(2))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec(2)}{(xsec(2) + xtan(2))} + \frac{tan(2)}{(xsec(2) + xtan(2))}\right)}{dx}\\=&(\frac{-(sec(2) + xsec(2)tan(2)*0 + tan(2) + xsec^{2}(2)(0))}{(xsec(2) + xtan(2))^{2}})sec(2) + \frac{sec(2)tan(2)*0}{(xsec(2) + xtan(2))} + (\frac{-(sec(2) + xsec(2)tan(2)*0 + tan(2) + xsec^{2}(2)(0))}{(xsec(2) + xtan(2))^{2}})tan(2) + \frac{sec^{2}(2)(0)}{(xsec(2) + xtan(2))}\\=&\frac{-sec^{2}(2)}{(xsec(2) + xtan(2))^{2}} - \frac{2tan(2)sec(2)}{(xsec(2) + xtan(2))^{2}} - \frac{tan^{2}(2)}{(xsec(2) + xtan(2))^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回