数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数-4pi*0.0000001(2230*1.61sin(100pix) + \frac{1.4*2iarctan(\frac{6*1.61sin(100pix)}{5})*1000000}{p})*100*9*0.0001 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -0.0001292508pisin(100pix) - 0.1008i^{2}arctan(1.932sin(100pix))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -0.0001292508pisin(100pix) - 0.1008i^{2}arctan(1.932sin(100pix))\right)}{dx}\\=&-0.0001292508picos(100pix)*100pi - 0.1008i^{2}(\frac{(1.932cos(100pix)*100pi)}{(1 + (1.932sin(100pix))^{2})})\\=&-0.01292508p^{2}i^{2}cos(100pix) - \frac{19.47456pi^{3}cos(100pix)}{(3.732624sin^{2}(100pix) + 1)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回