数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(xlog_{2}^{x} + (1 - x)log_{2}^{1 - x})}{(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xlog_{2}^{x}}{(x + 1)} + \frac{log_{2}^{-x + 1}}{(x + 1)} - \frac{xlog_{2}^{-x + 1}}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xlog_{2}^{x}}{(x + 1)} + \frac{log_{2}^{-x + 1}}{(x + 1)} - \frac{xlog_{2}^{-x + 1}}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})xlog_{2}^{x} + \frac{log_{2}^{x}}{(x + 1)} + \frac{x(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))})}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}})log_{2}^{-x + 1} + \frac{(\frac{(\frac{(-1 + 0)}{(-x + 1)} - \frac{(0)log_{2}^{-x + 1}}{(2)})}{(ln(2))})}{(x + 1)} - (\frac{-(1 + 0)}{(x + 1)^{2}})xlog_{2}^{-x + 1} - \frac{log_{2}^{-x + 1}}{(x + 1)} - \frac{x(\frac{(\frac{(-1 + 0)}{(-x + 1)} - \frac{(0)log_{2}^{-x + 1}}{(2)})}{(ln(2))})}{(x + 1)}\\=&\frac{-xlog_{2}^{x}}{(x + 1)^{2}} + \frac{log_{2}^{x}}{(x + 1)} + \frac{1}{(x + 1)ln(2)} - \frac{log_{2}^{-x + 1}}{(x + 1)^{2}} - \frac{1}{(x + 1)(-x + 1)ln(2)} + \frac{xlog_{2}^{-x + 1}}{(x + 1)^{2}} - \frac{log_{2}^{-x + 1}}{(x + 1)} + \frac{x}{(x + 1)(-x + 1)ln(2)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回