数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{(sqrt({x}^{2} - e^{-1}(\frac{({x}^{2})}{(({x}^{2} - {e}^{(\frac{3}{2})}))})))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{sqrt(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{sqrt(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})}\right)}{dx}\\=&\frac{-(2x - (\frac{-(2x - \frac{3}{2}e^{\frac{1}{2}}*0)}{(x^{2} - e^{\frac{3}{2}})^{2}})x^{2}e^{-1} - \frac{2xe^{-1}}{(x^{2} - e^{\frac{3}{2}})} - \frac{x^{2}e^{-1}*0}{(x^{2} - e^{\frac{3}{2}})})*\frac{1}{2}}{(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})^{\frac{1}{2}}}\\=&\frac{-x}{(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})^{\frac{3}{2}}} - \frac{x^{3}e^{-1}}{(x^{2} - e^{\frac{3}{2}})^{2}(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})^{\frac{3}{2}}} + \frac{xe^{-1}}{(x^{2} - \frac{x^{2}e^{-1}}{(x^{2} - e^{\frac{3}{2}})})^{\frac{3}{2}}(x^{2} - e^{\frac{3}{2}})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回